Implementing single node decision tree, bagging, adaboost using matlab

  • Статус Закрыт
  • Бюджет ₹600 - ₹1500 INR
  • Всего заявок 5

Описание проекта

[url removed, login to view] a single-node decision tree:

Write functions which take a data set and compute the optimal decision plane. The input set of instances can be of two or more dimensions. The output from the main function must be the identified projection vector.

 

[url removed, login to view] bagging and AdaBoost:

Write functions which take a set of examples and identify the decision plane to separate the examples.  The input set of instances can be of two or more dimensions. The output from the main function must be the identified hyper plane.

 

[url removed, login to view], write functions to visualize the synthetic data and evaluate the methods with synthetic data using MATLAB.

The functions should be able to allow user to specify which dimensions (no more than 3 dimensions) to be included in the visualization and be able to use color to differentiate examples from different classes.

Conduct cross-validation and report the average accuracy, sensitivity, and specificity.

 

Бесплатно получить ценовые предложения для подобного проекта
Требуемые навыки

Хотите заработать?

  • Укажите свой бюджет и срок
  • Опишите свое предложение
  • Получите оплату за свою работу

Нанять фрилансеров, которые также подали заявку в этот проект

    • Forbes
    • The New York Times
    • Time
    • Wall Street Journal
    • Times Online