Завершен

1D CNN VAE on pytorch for MNIST Dataset -- 2

• Complete the code for 1D CNN Variational autoencoder (1D-CNN VAE) using a notebook as seen in VAE_pytorch_custom notebook in the attached.

• Write and comment the meaning of the input of a 1D CNN and others used in pytorch and use the MNIST dataset for it.

• Plot the 2D latent space generated by training a 1D CNN VAE and ensure the latent space corresponds to that obtained for 1D CNN VAE of tensorflow (see attached).

• The first notebook is done for tensorflow and you can use ideas of the network structure for tensorflow to design your pytorch version.

Навыки: Machine Learning (ML), Интеллектуальный анализ данных, Анализ и обработка данных, Искусственный интеллект, Pytorch

Показать больше: vae pytorch tutorial, angular 2 complete e-commerce app course - java spring mysql free download, mws restaurant stage 2 complete, pytorch mnist tutorial, cnn lstm pytorch, 1d cnn classification, dataset creation and cleaning: web scraping using python — part 2, 1d cnn python code, 1d cnn keras, 1d cnn python eeg, angular 2 complete e-commerce app course - java,spring,mysql, antlr 4.7 2 complete, 1d cnn time series, 1d cnn time series pytorch, 1d cnn for text classification, 1d cnn pytorch, mstore pro v3 9.2 complete react native template for e commerce, pytorch vs tensorflow 2, pytorch vs tensorflow 2.0 2020, keras cnn to pytorch

О работодателе:
( 1 отзыв ) GALAXY ZERO, France

ID проекта: #31046580

Поручен:

DavidDu321

Hi there, I am a first class honours computer science graduate from top uni. Your project is very close to previous projects, therefore I am capable of doing it. I am currently an academic tutor for graduate-level dee Больше

€30 EUR за 7 дней(-я)
(1 отзыв)
1.1

4 фрилансеров(-а) готовы выполнить эту работу в среднем за €144

(61 отзывов(-а))
9.4
usamamw141

Hey there, I can do this project using pytorch. Feel free to inbox me now so that we can discuss about this project. Thank you.

€120 EUR за 2 дней(-я)
(33 отзывов(-а))
5.4
(34 отзывов(-а))
5.0